GNN学习笔记

同济子豪兄:改变世界的谷歌PageRank算法课程笔记

Google PageRank

  • The Anatomy of a Large-Scale Hypertextual Web Search Engine

Introduction

  • The web as a directive graph
  • Ranking nodes on the graph
  • Core idea:
    • Links as vote (In-comming links)
    • Links from important pages count more
    • Recurisive question
  • Solusion
    • Measure the importance of nodes in the graph using the link structure.
    • r_j = \Sigma_{i \leftarrow j}{\frac{r_i}{d_i}}
      • d_i is the outdegree of node i
    • Stochastic adjacency matrix M, Rank vector r
      • M_{j,i} = 1 / d_i
      • \Sigma_i{r_i} = 1
      • r \get M \cdot r
      • EigorVector(特征向量)
      • 收敛:r = M(M(…M(r)))
        • r_i^{t+1} - r_1^t < \epsilon
    • Random Walk
      • 模拟的思路
      • 可以理解为在directive graph中random walk,pagerank就是它可能走到这个node的概率。
      • Spider Traps
        • With prob. \beta, follow a link at random
        • With prob. (1-\beta), jump to a random page
      • Dead-ends
        • Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go
    • Integrate Procedure