MIT IAP 2023 Modern Zero Knowledge Cryptography课程笔记

Lecture 2: Circom 1 (Brain Gu)

  • autogen “intermediate” values
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    pragma circom 2.1.6;

    template Example () {
    signal input x1;
    signal input x2;
    signal input x3;
    signal input x4;

    signal y1;
    signal y2;

    signal output out;
    // how to autogen "intermediate" values
    // can use any operators
    y1 <-- x1 + x2;
    y2 <-- y1 * x3;
    out <-- y2 - x4;

    // constrains
    // only can use + and *
    y1 === x1 + x2;
    y2 === y1 * x3;
    out + x4 === y2;

    }

    component main { public [ x1,x2,x3,x4] } = Example();

    /* INPUT = {
    "x1": "2",
    "x2": "4",
    "x3": "8",
    "x4": "5"
    } */
  • Some improvement with “syntactic sugar”
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    pragma circom 2.1.6;

    template Example () {
    signal input x1;
    signal input x2;
    signal input x3;
    signal input x4;

    signal y1;
    signal y2;

    signal output out;

    //y1 <-- x1 + x2;
    //y1 === x1 + x2;
    y1 <== x1 + x2;

    //y2 <-- y1 * x3;
    //y2 === y1 * x3;
    y2 <== y1 * x3;

    //out <-- y2 - x4;
    //out + x4 === y2;
    out <== y2 - x4;

    }

    component main { public [ x1,x2,x3,x4] } = Example();

    /* INPUT = {
    "x1": "2",
    "x2": "4",
    "x3": "8",
    "x4": "5"
    } */
  • Example: import other code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    pragma circom 2.1.6;

    include "circomlib/poseidon.circom";
    // include "https://github.com/0xPARC/circom-secp256k1/blob/master/circuits/bigint.circom";

    template Example () {
    signal input a;
    signal input b;
    signal output c;

    var unused = 4;
    c <== a * b;
    assert(a > 2);

    component hash = Poseidon(2);
    hash.inputs[0] <== a;
    hash.inputs[1] <== b;

    log("hash", hash.out);
    }

    component main { public [ a ] } = Example();

    /* INPUT = {
    "a": "5",
    "b": "77"
    } */
  • Exercises
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    //IsZero
    //Parameters: none
    //Input signal(s): in
    //Output signal(s): out

    template IsZero() {
    signal input in;
    signal output out;

    signal inv;

    inv <-- in!=0 ? 1/in : 0;

    out <== -in*inv +1;
    in*out === 0;
    }

    //IsEqual
    //Parameters: none
    //Input signal(s): in[2]
    //Output signal(s): out

    template IsEqual() {
    signal input in[2];
    signal output out;

    component isz = IsZero();

    in[1] - in[0] ==> isz.in;

    isz.out ==> out;
    }

    //Selector
    //Parameters: nChoices
    //Input signal(s): in[nChoices], index
    //Output: out

    template CalculateTotal(n) {
    signal input in[n];
    signal output out;

    signal sums[n];

    sums[0] <== in[0];

    for (var i = 1; i < n; i++) {
    sums[i] <== sums[i-1] + in[i]
    }

    out <== sums[n-1];
    }

    template QuinSelector(choices) {
    signal input in[choices];
    signal input index;
    signal output out;

    // Ensure that index < choices
    component lessThan = LessThan(4);
    lessThan.in[0] <== index;
    lessThan.in[1] <== choices;
    lessThan.out === 1;

    component calcTotal = CalculateTotal(choices);
    component eqs[choices];

    // For each item, check whether its index equals the input index.
    for (var i = 0; i < choices; i ++) {
    eqs[i] = IsEqual();
    eqs[i].in[0] <== i;
    eqs[i].in[1] <== index;

    // eqs[i].out is 1 if the index matches. As such, at most one input to
    // calcTotal is not 0.
    calcTotal.in[i] <== eqs[i].out * in[i];
    }

    // Returns 0 + 0 + 0 + item
    out <== calcTotal.out;
    }

    //IsNegative

    template Num2Bits(n) {
    signal input in;
    signal output out[n];
    var lc1=0;

    var e2=1;
    for (var i = 0; i<n; i++) {
    out[i] <-- (in >> i) & 1;
    out[i] * (out[i] -1 ) === 0;
    lc1 += out[i] * e2;
    e2 = e2+e2;
    }

    lc1 === in;
    }

    template CompConstant(ct) {
    signal input in[254];
    signal output out;

    signal parts[127];
    signal sout;

    var clsb;
    var cmsb;
    var slsb;
    var smsb;

    var sum=0;

    var b = (1 << 128) -1;
    var a = 1;
    var e = 1;
    var i;

    for (i=0;i<127; i++) {
    clsb = (ct >> (i*2)) & 1;
    cmsb = (ct >> (i*2+1)) & 1;
    slsb = in[i*2];
    smsb = in[i*2+1];

    if ((cmsb==0)&&(clsb==0)) {
    parts[i] <== -b*smsb*slsb + b*smsb + b*slsb;
    } else if ((cmsb==0)&&(clsb==1)) {
    parts[i] <== a*smsb*slsb - a*slsb + b*smsb - a*smsb + a;
    } else if ((cmsb==1)&&(clsb==0)) {
    parts[i] <== b*smsb*slsb - a*smsb + a;
    } else {
    parts[i] <== -a*smsb*slsb + a;
    }

    sum = sum + parts[i];

    b = b -e;
    a = a +e;
    e = e*2;
    }

    sout <== sum;

    component num2bits = Num2Bits(135);

    num2bits.in <== sout;

    out <== num2bits.out[127];
    }

    template Sign() {
    signal input in[254];
    signal output sign;

    component comp = CompConstant(10944121435919637611123202872628637544274182200208017171849102093287904247808);

    var i;

    for (i=0; i<254; i++) {
    comp.in[i] <== in[i];
    }

    sign <== comp.out;
    }

    //LessThan
    //Parameters: none
    //Input signal(s): in[2]. Assume that it is known ahead of time that these are at most 2252−1.
    //Output signal(s): out

    //Specification: If in[0] is strictly less than in[1], out should be 1. Otherwise, out should be 0.

    //Extension 1: If you know that the input signals are at most 2^k - 1 (k ≤ 252), how can you reduce the total number of constraints that this circuit requires? Write a version of this circuit parametrized in k.
    //Extension 2: Write LessEqThan (tests if in[0] is ≤ in[1]), GreaterThan, and GreaterEqThan

    template LessThan(n) {
    assert(n <= 252);
    signal input in[2];
    signal output out;

    component n2b = Num2Bits(n+1);

    n2b.in <== in[0]+ (1<<n) - in[1];

    out <== 1-n2b.out[n];
    }



    // N is the number of bits the input have.
    // The MSF is the sign bit.
    template LessEqThan(n) {
    signal input in[2];
    signal output out;

    component lt = LessThan(n);

    lt.in[0] <== in[0];
    lt.in[1] <== in[1]+1;
    lt.out ==> out;
    }

    // N is the number of bits the input have.
    // The MSF is the sign bit.
    template GreaterThan(n) {
    signal input in[2];
    signal output out;

    component lt = LessThan(n);

    lt.in[0] <== in[1];
    lt.in[1] <== in[0];
    lt.out ==> out;
    }

    // N is the number of bits the input have.
    // The MSF is the sign bit.
    template GreaterEqThan(n) {
    signal input in[2];
    signal output out;

    component lt = LessThan(n);

    lt.in[0] <== in[1];
    lt.in[1] <== in[0]+1;
    lt.out ==> out;
    }

    //IntegerDivide
    //NOTE: This circuit is pretty hard!
    //Parameters: nbits. Use assert to assert that this is at most 126!
    //Input signal(s): dividend, divisor
    //Output signal(s): remainder, quotient
    // input: dividend and divisor field elements in [0, sqrt(p))
    // output: remainder and quotient field elements in [0, p-1] and [0, sqrt(p)
    // Haven't thought about negative divisor yet. Not needed.
    // -8 % 5 = 2. [-8 -> 8. 8 % 5 -> 3. 5 - 3 -> 2.]
    // (-8 - 2) // 5 = -2
    // -8 + 2 * 5 = 2
    // check: 2 - 2 * 5 = -8

    template Modulo(divisor_bits, SQRT_P) {
    signal input dividend; // -8
    signal input divisor; // 5
    signal output remainder; // 2
    signal output quotient; // -2

    component is_neg = IsNegative();
    is_neg.in <== dividend;

    signal output is_dividend_negative;
    is_dividend_negative <== is_neg.out;

    signal output dividend_adjustment;
    dividend_adjustment <== 1 + is_dividend_negative * -2; // 1 or -1

    signal output abs_dividend;
    abs_dividend <== dividend * dividend_adjustment; // 8

    signal output raw_remainder;
    raw_remainder <-- abs_dividend % divisor;

    signal output neg_remainder;
    neg_remainder <-- divisor - raw_remainder;

    if (is_dividend_negative == 1 && raw_remainder != 0) {
    remainder <-- neg_remainder;
    } else {
    remainder <-- raw_remainder;
    }

    quotient <-- (dividend - remainder) / divisor; // (-8 - 2) / 5 = -2.

    dividend === divisor * quotient + remainder; // -8 = 5 * -2 + 2.

    component rp = MultiRangeProof(3, 128);
    rp.in[0] <== divisor;
    rp.in[1] <== quotient;
    rp.in[2] <== dividend;
    rp.max_abs_value <== SQRT_P;

    // check that 0 <= remainder < divisor
    component remainderUpper = LessThan(divisor_bits);
    remainderUpper.in[0] <== remainder;
    remainderUpper.in[1] <== divisor;
    remainderUpper.out === 1;
    }